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A new method for evaluating slit-smeared small-angle scattering data is discussed. It is applicable to 
any primary beam-intensity distribution. The propagation of measuring errors is examined; expres- 
sions for the computation of the precision of all derived pinhole scattering curve properties are given. 
There is no need to smooth the measured curve before applying the evaluation procedures. The method 
turns out to be very suitable for practical use. 

Introduction 

To examine X-ray scattering in the small-angle range 
slit-collimation systems are normally used. For the regi- 
stration of the scattered intensity in a plane perpen- 
dicular to the primary beam plane counting detectors 
with a slit-like window are often used. The experi- 
mental result, the 'slit-smeared' scattering curve, does 
not show the interesting diffraction intensity distribu- 
tion in reciprocal space. A measurement made with the 
counter window at height h above the primary beam 
plane records an integral intensity S(h), which in the 
case of an isotropic sample can be expressed as 

l g( S(h)= h, b)So(b)db . 
b= 

(i) 

Here So(b) is the corresponding pinhole scattering in- 
tensity distribution in the plane of registration and 
g(h, b) is a weighting function which depends upon 
the collimation- and registration-system geometries. 

Methods for calculating So(b) from the measured 
slit-smeared scattering curve, i.e., solving the smearing 
equation (1) for the unknown function So(b), have been 
published by various authors. Guinier & Fournet 
(1947) and DuMond (1947) found an analytical solu- 
tion for the case of a primary beam of infinite slit- 
height. Modifications of this method for use with vari- 
ous slit collimation geometries have been developed by 
Kratky, Porod & Kahovec (1951), Gerold (1957), 
Schmidt & Hight (1960), Heine & Roppert (1962), 
Kent & Brumberger (1964) and others. A Fourier trans- 
form method has been described by Ruland (1964). 
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Fig. 1. Primary beam intensity distribution. 

Recently some new approaches to the problem have 
been published: Mazur & Wires (1966) established a 
formal method for solving the smearing integral equa- 
tion, Lake (1967) has treated it by an iteration proce- 
dure, and Hossfeld (1968) has developed an algebra 
in coefficients of Hermite polynomials. 

In the following sections a new method for evaluat- 
ing slit-smeared scattering data is discussed. The 
method is applicable to arbitrary primary beam inten- 
sity distributions and allows the calculation of averages 
over the pinhole scattering values within distinct re- 
gions (with the limiting case of local values of the 
pinhole scattering curve), and the computation of the 
electron density autocorrelation function. 

It can be shown that small changes in the values of 
the smeared curve are generally related to considerable 
changes in the pinhole scattering curve. As a con- 
sequence errors in the smeared curve may result in 
quite large deviations of the calculated pinhole scatter- 
ing curve from its true form. To obtain knowledge of 
the precision of the calculated quantities the propaga- 
tion of errors has been examined. Expressions for the 
computation of the precision of all calculated quantities 
are given. The most important advantage of the method 
discussed is that, using these expressions, the informa- 
tion content of the measurement can be judged. 

In addition, in contrast to most of the existing meth- 
ods, the present method employs the measured data 
directly without any preceding smoothing procedures. 
It is therefore very suitable for practical application. 

The smearing equation 

Generally the weighting function g(h, b) is determined 
by the primary-beam intensity distribution in the regi- 
stration plane and the dimensions of the counter win- 
dow. In our case, where the widths of the primary 
beam and the counter window are negligibly small 
compared with their heights, the critical parameters 
are the height of the counter window, 2C1, and the 
primary beam intensity distribution along the slit, 
I(u), which gives the intensity per unit height, expressed 
in relative units (I(0)= 1). It is easily shown that, using 
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these parameters, the slit-smeared scattering curve S(h) 
and the pinhole curve in the plane of registration So(b) 
can be related by the equation 

where 

ioo S(h)= V(u') .  S0(V~--+-u~)du ' , (2) 
L U ' ~  - - o o  

V(u')= I u'+c' I (u )du .  
*)u=u'--C I 

Use of the relation b 2--= h 2 + u t2 between the coordinates 
in the registration plane leads to the more suitable 
form 

where 

C(b2-h2)= V(~/b2-~)+V(vV~-h2) (5) 
21/b5-172 

Under normal experimental conditions l(u) is trapezoi- 
dal and can be described, as indicated in Fig. l, by 
the parameters C2 and C3. C1 is normally chosen so 

(3) that C1 < C2. In this, the usual case, we obtain 

V(u) = 2C1 , if u < C2-  CI • 

As a consequence the weighting function becomes 
2CI 

G(b2-h2)  - Vb2_h2, if b 2 - h 2 < ( C z - C ~ )  2 (6) 

(4) and is equal in this region to the weighting function of 
a homogeneous primary beam of infinite height. This 

'5 7'o c~'-h2J ccm~ 

* Cern'~ 

(a) 

05" 

° t 
I I I 
I 5 I0 (h 2-- b 2) [crn 2] 

(b) 

Fig. 2. (a) Smear ing funct ion G(b 2 -h2), as calculated for paramete r  values Cx = 0.5, C2 = 1 "5, C 3 = 2.9 cm. Funct ion  (b) G*(h 2 - b  2) 
cor responding  to the smear ing funct ion G(b 2 -  h 2) in (a). 
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property expresses the well known fact that the assump- 
tion of a slit of infinite height is justified only if the 
scattered radiation is mainly limited to the region 
h2<(C2-C1) 2. 

The smearing equation (4) may be transformed to 
an equivalent system of linear equations 

C1 • L 
condoo (~ ) -  d .  I2~) 

7 where L =  I(u)du is a measure of the height of 
u ~  --oo 

with 

g=~. d.go 

g =[g(&)] ; g0 = [X0(&)] 

1 I bj+l G(b,Z_h~)db,2] 
~=[~(&, bj)= d ~b'=bj 

where [b l=h l=0 ,  b2=h2=d, . . . ,  b N = h N = ( N - 1 ) d ]  
is a series of N equidistant points and S0(&) is an aver- 
age value with limits 

So(&) <_ So(&) <_ So(b,+,). 

(7) the primary beam. 
As a consequence it is found that, if d takes small 

values, a slight uncertainty in g is greatly magnified 
and can result in a considerable uncertainty in So. 
There is another interesting result: suppose we want 
to determine S0 with a certain precision. We may say 

(8) that, for the measurement time tM, needed to arrive 
at this precision, the following proportionality relation 
is valid: 

condoo (~) 
tM ~ total intensity of the primary beam x height of 

the counter window 

In principle, the system of linear equations (7) can be 
solved for the unknown quantity S0. However, since 
there is some uncertainty in the determination of g 
due to measuring errors of random character, the cor- 
responding uncertainty in S0 should be examined. An 
upper limit for this uncertainty in S0 is given, using 
the condition-number condoo(~) (see, e.g. Franklin, 
1968) 

l,~goloo I,~gloo 
Ig01oo -< cond.  (~) j-~To~ ' 

where 5S0 is the change in S0 connected with a small 
deviation ~ig [generally ]UIoo means the Tschebyscheff- 
norm max [Ui[ of a vector U=(U0] .  It can be shown 

i 
(see Appendix) that, under normal experimental con- 
ditions and if d is sufficiently small, the condition- 
number is determined as 

C 1 . L 1 
"" = c, -- (9) 
- d. V(O).L. C, d. I I(,)du 

u~  - C I  

Equation (9) means that in order to shorten the meas- 
uring time, the smaller of the two parameters C1, C3 
must be increased. 

Method of solution 

It is possible to compute from the smeared scattering 
curve S(h), by a simple convolution procedure, values 
of the integral intensity T(b), defined by 

T(b)= lb~.=bSo(b')db '2 . (10) 

I0000. 
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Fig. 3. Smear of the pinhole curve So(b) of an isotropic distribution of linear paracrystals. 



This can be demonstrated as follows. 
Multiplication of equation (4) 

G*(h 2 -  b '2) and integration lead to 
by a function 

or 

This function G* can be determined as follows. For 
a series of equidistant points [ x i = ( i - 1 ) d ]  equation 
(11) may be transformed to 

i oo G*(h 2 -  b'Z)ff(h)dh z 
h = b '  

= G* 2_b '  2_h  z o 2db2. 
h=b" b=h 

Rearranging the integration order we obtain 

i oo G*(h 2 -  b'2)ff(h)dh 2 
h=b' 

7 (S -- So(b) G*(hZ-b'Z)G(bZ-h2)dh2 db 2 . 
b=b' h~b '  

If G* is now determined by the condition 

Ii=b,G*(hZ-b'2)G(bZ-h2)dhZ=const (b 'z, b2) = 1 

0.5- 

i t G * ( t ' ) G ( t - t ' ) d t ' = c o n s t  (t)= 1 (11) 
t ' = 0  

we arrive at the relation 

i 
oo 

T(b)= G*(h2-bz)S(h)dh 2 . (12) 
h=b 

Equation (12) means that the integral intensity T(b) 
can be derived from the smeared scattering curve by 
convolution of S(h z) with the function G*. 

J 
d . ~  (3~'(3j-,+,= 1, j =  1, 2, . . . , j m  (13) 

1=1 

where (7~, (3i are average values with properties 

G[( i -  1). d] N (31N a( i  . d) ; 

G*[( i -  1). d]N (3~ < G*(i .  d ) .  

Equation (13) allows a successive determination of 
(7"1, (3 2, etc. By using sufficiently small values of d, 
G*(t) can be approximated as closely as desired. 

For values of t < ( C 1 - C 2 )  2 the function G*(t) can 
be described by an analytical expression. We have, 
recalling equation (6) 

2C~ G ( t ) - l / t  , if t < ( C I - C ~ )  2. 

Inserting this expression in the integral equation (11) 
we get 

Ii=0 G ,) 2C1V t - t '  , *(t - . - _ d t  = 1 ,  (14) 

an equation which defines G*(t) for values of t_< 
(C1-  C2) 2. As is well known, the solution of (14) is 

1 
G * ( t ) -  2 C V-~-,'t " (15) 

o 
0 0.025 b oo 5 olo7 ob 5 o.b2 
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Fig.4. Limiting curves for the integral intensity T(b)= I;,=b S°(b')db'2" 
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For sufficiently large values of t, let us say t > C], G* 
can be approximated by its asymptotic value 

i 
o o  

a*(t  -+ cx~)= 1/ G(t ')dt '  . 
t ' = O  

The constant C 4 defines a 'range of influence': in or- 
der to compute 

Iil So(b)db2= T ( b l ) -  T(b2) 

or a similar integral or averaged quantities, the only 
requirement is information about the behaviour of S(h) 
within the region b~ < h z < b~ + Ca 2. 

As an example Fig. 2(b) shows the function G* which 
has to be applied in the case of the smearing function 
G shown in Fig. 2(a). 

It must be remarked at this point that Kratky, 
Porod & Kahovec (1951) have derived an integral 
equation which is quite closely related to our equation 
(11), and connects the quantities G(t ) .  l/t, G*( t ) .  1/t 
(called g(t), f ( t )  in their publication). This integral 
equation has a rather complicated form and a method 
of solving it for the general case could not be found. 

Equation (15) shows that G*(t) tends to infinity as 
t -+ 0. This singularity may be eliminated by transform- 
ing equation (12) to 

where 

o o  

T(b)= S(h)dF*(h2-b  2) 
h = b  

i 
t 

F*( t )=  G*(t ')dt '  . 
t ' = O  

(16) 

(17) 

For numerical computations equation (16) is the more 
suitable form. For a series of N points (hi = b 0  the in- 

tegral (16) is evaluated by calculating sums of the type 

N 

T(bi) = ~g, jS(hj )  . (18) 

Statistical analysis of error propagation 

Let us now discuss the effects of errors. In view of 
their random nature we will treat them statistically. 

Each series of N intensity measurements, expressed 
as pulses per minute, is represented as a point in the 
sample space of an N-dimensional random variable 

~=[o(h3, o(h2) , . . . ,  o(&v)] 

with the mean 

( ~ )  = [S(hl), S(h2), . . . ,  S(&v)] 

(the exact value of a physical quantity and the corre- 
sponding random variable, representing the possible 
experimental results, are distinguished by using roman 
or Greek letters respectively). The errors in different 
measured values are statistically independent. There- 
fore, using the abbreviation A e = e - ( e )  we have 

<A(ohO, A o(hj ) )=gi j (A o(h02). (19) 

The possible experimental results form a Poisson dis- 
tribution. This leads, depending upon the method of 
measurement, to the following expressions for the vari- 
ance (A o(hi) 2) of o(hO: 

<A o(h02> =< o(hi)_> ~ o(hO 
Q - Q ,  

if the pulses during Q minutes are counted or 

~ ( h ~ ) 2 )  = < l 1 _ ~ ( h ' ~ )  >2  [ ~ ~ ( h ~ ) 2  .... <z 
P P , 

0.5 

1 I | I 

0 0005 O01 0.015 0.02 
I 

o.025 b/~7 

Fig. 5. Limiting curves for bSo(b, w= 1,5. 10 -4 A-I). 
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if the time needed to register P pulses is measured. 
In addition to ~, • = [z(bl), . . . ,  r(blv)], defined by 

N 

z(b0= ~..gij~(h~) (20) 

is a random variable. It has the mean 

(~)=[T(b,) ,  T(b2), . . . ,  r(bu)] (21) 

and the variance 
N 

(dr(hi)2)= ~ g~j(A 6(hy)2). (22) 
y=i 

r(bO, as a sum over a large number of independent 
variables, is approximately of Gaussian distribution. 
As a consequence, the major portion (86 %) of sample 
points lies within the range 

(,v(&))- 1.5I,:(Ar(&) z) --> (r(b,)) 

+ 1.5~(Ar(bOZ). 

Using the two series of calculated quantities [r(b0], 
[(At(&)2)] we are now able to specify limits for r(b). 
In the main T(b) lies between the two sets of points 

[z(b 0 -  l'5l/(Az(b02)] and [r(b0+l.5l /(Az(b02).  

(23) 

Calculation of the autocorrelation function 

Sometimes one is interested in the electron-density 
autocorrelation function for isotropic scatterers 

where C and C'  are appropriate constants. 
By partial integration, using the two properties 

lira T(b) sin 2rcC'br=O , lim T(b) sin 2zcC'br=O , 
b----~0 b ~ cc 

which are valid for all real cases, we arrive at 

K(r) = 2rcC I :  T(b) cos 2rcC'br. db. (26) 

Hence Fourier transformation of the integral intensity 
T(b) leads to the autocorrelation function K(r). 

The calculation of the variance of the stochastic 
process/c(r) corresponding to K(r), can easely be made 
by a computer by evaluating the double integral 

(At¢(r)Z):(Zz~C)2 fb !b "(Ar(b)Ar(b')) 

X COS 2z~C 'b r .  cos 2~zC'b'r. db. db' 
where 

N 

(Az(bi)Ar(bj>_O)= ~ giygz'(A 6(hy)2). 
],=j 

Evaluation methods 

The first step in the evaluation of scattering data is the 
computation of the limits (23) for the course of the 
integral intensity T(b) by use of the equations (20) and 
(22). Many interesting properties of the pinhole scat- 
tering curve, for example the position, integral inten- 
sity and peak intensity of a reflexion, can be taken 
directly from T(b). 

1 S (1 s )2 K(r=lxl)= V" / (x +y)rI(y)d3y- V v r/(y)d3y ' 

1 
where r/is the electron density and~-V is the scattering 
volume. 

There is a well known relation (see, e.g. Guinier, 
1963) between K(r) and the scattering intensity distri- 
bution in reciprocal space S0(s): 

S rK(r) ~., s=oSO(S)2S, sin 2zcsr. ds. (24) 0.5 

In the small angle region the reciprocal space coor- 
dinate s and the measuring system coordinate b are 
related by 

s,,,b . (25) 

By use of equation (25), and since from equation (10) 
I I 

0.005 0.01 

equation (24) may be written as 

S;0sin rK(r) = - C 2rcC'br. dT 

0 
d T = -  2bSo(b)db , o 

I I 

0.075 oo2 b [~-'2 
Fig.6. Original pinhole curve. The dashes represent average 

values - ~b2So(b')db'Z/(b]-b~) as calculated from the smeared 
d b l  

curve; bl and b2 are indicated by the beginning and end of 
a dash respectively. 
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If necessary in a further step we can calculate aver- 
ages over the pinhole scattering values within distinct 
regions. Let us introduce for this purpose a general 
notation for average values 

I9 
1 f t+2 w U(t')dt, O(t, w)=  w 

2 

and the abbreviation 

Sl(b) = 2b. So(b). 
Average values ,ql(b, w) are easily derived from the in- 
tegral intensity T(b): using equations (10) and (18), 
we obtain 

1 [ r ( b  0 - T ( b j ) ]  

1 j - i  N ] 

J • ,=" ),=j 

The corresponding random variable 61(b, w), defined by 

) ' 
61 , b j -  bi  - b~ - bj 

has mean 

. . . .  [T(b0- T(bj)] (27) 

and variance 

<A6x , b i -b i  > -  
(bi - bj) 2 

j-1 N ] 
× [],~gt~' (z~ 6(hi,) 2) +j,=j~,(g~j'-gjj')2(,A 6 (hi,) 2) . (28 

From the calculation of 61(b, w) and (A~l(b, w) 2) we 
are now able to specify limits for Sl(b, w): 

,-ql(b, w) lies, with a probability of approximately 
0.86, within the range 

w)2}--,  s(b, w) 
+ w)2). 

It is generally found that the standard deviation 

w)2) 
w)) 

decreases with increasing averaging range w; the limi- 
tation becomes narrower as the chosen value of w is 
increased. 

To obtain information about the local values along 
the pinhole curve, a series of average values has to be 
computed. The following two different ways seem 
useful. 

Firstly, a series of averaging distances w(b~) can be 
set and limitations for the course of Sa[b, w(b)] can be 
determined by computing the series of values 

and 

6x (b~-~+ 2 b_j, by_b Q 

<A61 , by-b~ > , i = 1 , 2  . . . .  , N ,  

where bj is chosen as bj~_bi +w(bi). This seems espe- 
cially suitable if it is assumed that Sl(b) shows approx- 
imately linear character within distances of length w(b) 
and thus remains almost unchanged by averaging over 
these distances. 

Secondly, a condition can be set for the relative width 
of the limiting region, that means a certain precision 
of the results, and the minimum averaging distances 
Wmtn(b) needed to arrive at this precision, can be com- 
puted, together with the corresponding average values 

15000- 

I0000- 

5000- 

"S [pulses]] 

j 
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OOl 
i I I I I I 

002 003 004 005 006 (3.07 h [~-9 
Fig.7. Smear of the pinhole curve from a powder of oligomer crystals. 
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61[b, Wmin(b)]. The values Wmin(b) then indicate how 
finely the pinhole curve has been resolved by the ex- 
periment; the values 6a[b, Wmin(b)] fix, with the required 
precision, the course of S~[b, Wmin(b)], and also that of 

1 
S0[b, Wmin(b)] ~- 2b- Sa[b, Wmin(b)] 

[if Wmin(b) '~ b]. 
The evaluation procedures are applied directly to the 

measured data and there is no need for a preceding 
smoothing process. As a result of the errors (of ran- 
dom character) in the measured values, the calculated 
points will be found distributed over a certain range 
around the exact curve. A measure of the extent of 
this range is given by the calculated variances. It is 
this range of spread which clearly shows the limita- 
tions of the curve fitting, and thus the precision of the 
pinhole values. 

Numerical examples 

For demonstration two numerical examples have been 
calculated. 

In the first example a curve of a form typical for 
semicrystalline polymeric substances is examined. Fig. 3 
shows the smeared curve S(h); we assumed registration 
to be in steps Ah = 1.5.10 -4 ~-x by counting the pulses 
during a fixed time, and a peak counting rate of roughly 
10,000 pulses. Fig. 4 shows the result of applying equa- 
tions (20) and (22) to calculate limits for the values 
of the integral intensity T(b). In Fig. 5 the limits for 
bSo(b, w= 1.5 . 10 -4 .~-1) are given. The calculation 
was performed using equations (27) and (28). The curve 
shown in Fig. 6 is the original pinhole curve So(b). 
The dashes represent average values 

f b~So(b')db'2 / (b~-b~) 
bl / 

of standard deviation less than 0.04, as calculated 
from the smeared curve, bl and b2 are indicated by the 
beginning and the end of a dash respectively. 

Since we started with the exact values S(hO of the 
smeared curve, the use of the introduced formalism 
leads to the exact values T(bO and bSo(b~, Ah) ~ - 
So(b 0 . hi. These lie in the middle of the plotted corre- 
sponding limiting curves. In a hypothetical measure- 
ment the measured values would be found spread 
around the exact curve S(h). As a consequence, the 
points calculated by the application of the formulae to 
such a set of data would be found scattered within the 
regions limited by the drawn curves. Figs. 4, 5 & 6 
clearly show the information content of the measure- 
ment. The intensity and the position of the main peak 
are well defined. Owing to the lower counting rates in 
the region around the second peak there is some un- 
certainty in the determination of its position and shape. 
Since the counting rates in the region b = 0.002 ~,-1 

b = 0.005/~-1 are strongly influenced by the high peak 
intensity, the course of the pinhole curve in this range 
is only very roughly determined. 

In a second example we deal with the smeared curve 
plotted in Fig. 7; we assumed registration in steps 
Ah=2 .25 .10  -4 A -1 by counting the pulses during a 
fixed time; the intensities were chosen as indicated. 
Figs. 8 and 9 show the result of applying evaluation 
procedures to compute properties of the pinhole scat- 
tering curve in the region b = 0.005.~-1 _+ b = 0.037/~-1. 

Calculation was done on the CD 3300 computer at 
the University of Mainz. The total computation time 
for calculating G* and performing the evaluation pro- 
cedures, resulting in the curves shown in Figs. 4, 5 
and 6, lies in the range of 1 minute. A FORTRAN IV 
listing of the 'desmearing' program can be obtained 
from the author. 

The author expresses his thanks to Professor E. W. 
Fischer for many valuable discussions and comments. 
He is much indebted to Dr P. Holdsworth for his ad- 
vice in presenting these concepts. The work has been 
supported by the Deutsche Forschungsgemeinschaft. 

APPENDIX 

The condition-number of a matrix [g is defined as 

cond~o(~)- luboo~ 
glboot~ 

0.5- 

I I 

o ob~ o~2 0.03 oo~ ~ g,-'J 

Fig. 8. Limiting curves for the integral intensity T(b). 



G. R. S T R O B L  375 

where 

Ig. Soloo _ max 2.,Igtno)lX-"--", ,_j,, 
lub~o~ = soSUp~u i g ~  - i i 

and 

glb~o~ = inf Ig-Sol~o 
S0 G~N i So-~~ -~ 

luboo(l~) can be easily calculated: it is, using equations 
(8), (3) and (5) 

fb=hG(b2_ l dl o~ h2)db2 = d 2C1L = lub~o~: ~l'((h~, bj)l = 
J 

where 

S L = I(u)du 
- -  OC.  

is a measure of  the height of  the pr imary beam. 

1 

O. 

I I I I 

0 001 002 0.03 004 b Lr~-t.7 

Fig.9. A section of the original pinhole curve. The dashes 
represent average values as calculated from the smeared 
curve. 

Since 

g(h~, bj) >_ 0 

and, from equation (5), 

g(h,, bO>_g(hl, b , )=2V(O) ,  if V(d) ~ _ V(O), 

we get, for sufficiently small d, the inequality 

I~. Sol~___ 2V(0). ISol~ • 

For the special case So(h0=&~ 1 we have 

I~. Sol~o = 2 v ( 0 ) .  ISol~o • 

We therefore obtain 

glbl~=2V(0) .  

Hence, we get 

C1L 
condo~(t~) = d .  V(0)" 
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